

C-CWLSolid White CPP Film

C-CWL is a Co-Extruded white opaque film with one side corona treated and other side sealable.

THE BIG DIFFERENTIATORS

KEY FEATURES:

- Excellent Gloss & Improved Opacity
- Consistent slip
- Good Machinability
- Excellent Sealing integrity
- Whiteness eliminates the need for white ink
- Excellent hot tack

APPLICATIONS:

- Lamination & Conversion
- Confectionary Packaging
- Over wrap
- Surface Printing

PROPERTIES		TEST METHOD (ASTM)	UNIT	TYPICAL VALUES						
THICKNESS ± 5%		Internal	Micron	18	20	22	25	30	35	40
			(Gauge)	72	80	88	100	120	140	160
FILM DENSITY		D-1505	gm/cc	0.95						
GRAMMAGE		Internal	gm/m²	17.1	19	20.9	23.8	28.5	33.2	38
YIELD		Internal	m²/kg	58.5	52.6	47.8	42	35.1	30.1	26.3
			in²/lb	41125	36978	33603	29526	24676	21160	18489
TREATMENT LEVEL		D-2578	dyne/cm	38						
COEFF OF FRICTION (UTR/UTR)	DYNAMIC	D-1894	-	0.30 ± 0.05						
TRANSMITTANCE		D-1003	%	42	42	42	40	38	38	35
GLOSS (at 45°)		D-2457	Unit	50	50	50	50	50	50	50
TENSILE STRENGTH AT BREAK	MD*	D-882	kg/cm²	460						
	TD*			200						
	MD*		(KPsi)	6.5						
	TD*			2.8						
ELONGATION AT BREAK	MD*	D-882	%	400 600						
HEAT SEAL INITIATION TEMPERATURE		Internal	° C	115						
HEAT SEAL STRENGTH	(Min.)	Internal	gm/25mm	1500	1500	1800	1800	2000	2000	2000
WATER VAPOUR TRANSMISSION RATE (38° C & 90% RH)		F-1249	gm/m²/day	13	13	12	12	10	10	9
			(gm/100 in²/day)	0.8	0.8	0.7	0.7	0.6	0.6	0.6
OXYGEN TRANSMISSION RATE (23° C & 0% RH)		D-3985	cc/m²/day	3750	3700	3650	3650	3600	3600	3550
			(cc/100 in²/day)	242	239	235	235	232	232	229

Ref no QAD UFLI S/14 - C2/2

STORAGE & HANDLING

FLEXCPPTM does not require special storage conditions. It is recommended to storage below 30°C in order to avoid any deterioration of the film surface properties. It is advisable to use the material on FIFO basis. The film should be kept at operating environment for 24 hours before processing. FLEXCPPTM is best suitable for use within 3 months from date of dispatch.

FOOD CONTACT

 ${\sf FLEXCPP^{\sf TM}}\ complies\ with\ {\sf EC}\ and\ {\sf FDA}\ regulations.\ Specific\ document\ and\ {\sf MSDS}\ are\ available\ on\ request.$

DISCLAIMER

It is the responsibility of our customers to determine that their use of our products is safe, lawful, and technically suitable in their intended applications. The technical data sheets are provided for discussion purposes only. The customer may not rely on the data provided for any manufacturing purpose. The values provided in the technical data sheet represent typical values based on the best of our knowledge as of the date when the data was compiled. The data is offered solely to provide possible suggestions for your own experimentation and not as a guarantee for the material supplied. The user is solely responsible for the end use of the product and needs to perform their own tests to confirm the product suitability/compatibility in all respects. Flex provides no warranty and accepts no liability for any loss or fitness of the product for any specific purpose based on the information contained in the technical data sheets. Flex reserves the right to change the technical data sheet at any time without prior notice.

FlexFilms

^{*}MD = MACHINE DIRECTION *TD = TRANSVERSE DIRECTION